Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Featured Application

We provide a non-intrusive tool for the detection of adjacent and non-adjacent bar breakage from the acoustic noise radiated by a motor. It can be included as a smart application in a transportable device.

Abstract

We apply power spectral analysis based on covariance function and spectral subtraction to detect adjacent and non-adjacent bar breakages. We obtain a spectral pattern when the signal presents one or various broken bars, independent of the relative position of the bar breakages. The proposed algorithm gives satisfactory results for detectability compared to some previous research. Additionally, we also present illustrations of faults and signal to noise in the noise-reduction stage.

Details

Title
Detection of Adjacent and Non-Adjacent Bar Breakages in Induction Motors Based on Power Spectral Subtraction and Second Order Statistics of Sound Signals
Author
Iglesias Martínez, Miguel Enrique 1   VIAFID ORCID Logo  ; Fernández de Córdoba, Pedro 2   VIAFID ORCID Logo  ; Jose Alfonso Antonino-Daviu 3   VIAFID ORCID Logo  ; Conejero, J Alberto 2   VIAFID ORCID Logo 

 Departamento de Telecomunicaciones, Universidad de Pinar del Río, Martí #270, Pinar del Río 20100, Cuba; [email protected]; Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; [email protected] (P.F.d.C.); [email protected] (J.A.C.) 
 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; [email protected] (P.F.d.C.); [email protected] (J.A.C.) 
 Instituto Tecnológico de la Energía, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain 
First page
6641
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533961319
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.