Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Synthetic data provides a privacy protecting mechanism for the broad usage and sharing of healthcare data for secondary purposes. It is considered a safe approach for the sharing of sensitive data as it generates an artificial dataset that contains no identifiable information. Synthetic data is increasing in popularity with multiple synthetic data generators developed in the past decade, yet its utility is still a subject of research. This paper is concerned with evaluating the effect of various synthetic data generation and usage settings on the utility of the generated synthetic data and its derived models. Specifically, we investigate (i) the effect of data pre-processing on the utility of the synthetic data generated, (ii) whether tuning should be applied to the synthetic datasets when generating supervised machine learning models, and (iii) whether sharing preliminary machine learning results can improve the synthetic data models. Lastly, (iv) we investigate whether one utility measure (Propensity score) can predict the accuracy of the machine learning models generated from the synthetic data when employed in real life. We use two popular measures of synthetic data utility, propensity score and classification accuracy, to compare the different settings. We adopt a recent mechanism for the calculation of propensity, which looks carefully into the choice of model for the propensity score calculation. Accordingly, this paper takes a new direction with investigating the effect of various data generation and usage settings on the quality of the generated data and its ensuing models. The goal is to inform on the best strategies to follow when generating and using synthetic data.

Details

Title
Fake It Till You Make It: Guidelines for Effective Synthetic Data Generation
Author
Ibrahim, Mahmoud
First page
2158
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2534645791
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.