Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

At a time when research in the field of sentiment analysis tends to study advanced topics in languages, such as English, other languages such as Arabic still suffer from basic problems and challenges, most notably the availability of large corpora. Furthermore, manual annotation is time-consuming and difficult when the corpus is too large. This paper presents a semi-supervised self-learning technique, to extend an Arabic sentiment annotated corpus with unlabeled data, named AraSenCorpus. We use a neural network to train a set of models on a manually labeled dataset containing 15,000 tweets. We used these models to extend the corpus to a large Arabic sentiment corpus called “AraSenCorpus”. AraSenCorpus contains 4.5 million tweets and covers both modern standard Arabic and some of the Arabic dialects. The long-short term memory (LSTM) deep learning classifier is used to train and test the final corpus. We evaluate our proposed framework on two external benchmark datasets to ensure the improvement of the Arabic sentiment classification. The experimental results show that our corpus outperforms the existing state-of-the-art systems.

Details

Title
AraSenCorpus: A Semi-Supervised Approach for Sentiment Annotation of a Large Arabic Text Corpus
Author
Al-Laith, Ali 1   VIAFID ORCID Logo  ; Shahbaz, Muhammad 1 ; Alaskar, Hind F 2   VIAFID ORCID Logo  ; Rehmat, Asim 1 

 Computer Science Department, University of Engineering and Technology, Lahore 54890, Pakistan; [email protected] (M.S.); [email protected] (A.R.) 
 Artificial Intelligence and Data Analytics Laboratory, Prince Sultan University, Riyadh 11586, Saudi Arabia; [email protected] 
First page
2434
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2534646754
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.