Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Diabetes is a life-long condition that is well-known in the 21st century. Once known as a disease of the West, the rise of diabetes has been fed by a nutrition shift, rapid urbanization and increasingly sedentary lifestyles. In late 2019, a new public health concern was emerging (COVID-19), with a particular hazard concerning people living with diabetes. Medical institutes have been collecting data for years. We expect to achieve predictions for pathological complications, which hopefully will prevent the loss of lives and improve the quality of life using data mining processes. This work proposes a comparative study of data mining techniques for early diagnosis of diabetes. We use a publicly accessible data set containing 520 instances, each with 17 attributes. Naive Bayes, Neural Network, AdaBoost, k-Nearest Neighbors, Random Forest and Support Vector Machine methods have been tested. The results suggest that Neural Networks should be used for diabetes prediction. The proposed model presents an AUC of 98.3% and 98.1% accuracy, an F1-Score, Precision and Sensitivity of 98.4% and a Specificity of 97.5%.

Details

Title
Data Mining Techniques for Early Diagnosis of Diabetes: A Comparative Study
Author
Chaves, Luís
First page
2218
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2534648951
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.