Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Helmet comfort has always been important for the evaluation of infantry equipment accessories and has for decades not been well addressed. To evaluate the stability and comfort of the helmet, this paper proposes a novel type of helmet comfort measuring device. Conventional pressure measuring devices can measure the pressure of flat surfaces well, but they cannot accurately measure the pressure of curved structures with large curvatures. In this paper, a strain-resistive flexible sensor with a slice structure was used to form a matrix network containing more than a 100 sensors that fit the curved surface of the head well. Raw data were collected by the lower computer, and the original resistance value of the pressure was converted from analog to digital by the A/D conversion circuit that converts an analog signal into a digital signal. Then, the data were output to the data analysis and image display module of the upper computer. The complex curved surface of the head poses a challenge for the appropriate layout design of a head pressure measuring device. This study is expected to allow this intuitive and efficient technology to fit other wearable products, such as goggles, glasses, earphones and neck braces.

Details

Title
A Novel Helmet Fitness Evaluation Device Based on the Flexible Pressure Sensor Matrix
Author
Niu, Jianwei 1   VIAFID ORCID Logo  ; Zhang, Cong 1 ; Chen, Xiao 2 ; Chuang, Ma 1 ; Chen, Liyang 3 ; Tong, Chao 1 

 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China (C.Z.) (C.M.) (C.T.) 
 Military Institute of Engineering and Technology, Academy of Military Sciences, Beijing 100091, China 
 Guanghua School of Management, Peking University, Beijing 100871, China 
First page
3823
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535488535
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.