Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A growing need for sampling environmental spaces in high detail is driving the rapid development of non-destructive three-dimensional (3D) sensing technologies. LiDAR sensors, capable of precise 3D measurement at various scales from indoor to landscape, still lack affordable and portable products for broad-scale and multi-temporal monitoring. This study aims to configure a compact and low-cost 3D fusion scanning system (FSS) with a multi-segment Leddar (light emitting diode detection and ranging, LeddarTech), a monocular camera, and rotational robotics to recover hemispherical, colored point clouds. This includes an entire framework of calibration and fusion algorithms utilizing Leddar depth measurements and image parallax information. The FSS was applied to scan a cottonwood (Populus spp.) stand repeatedly during autumnal leaf drop. Results show that the calibration error based on bundle adjustment is between 1 and 3 pixels. The FSS scans exhibit a similar canopy volume profile to the benchmarking terrestrial laser scans, with an r2 between 0.5 and 0.7 in varying stages of leaf cover. The 3D point distribution information from FSS also provides a valuable correction factor for the leaf area index (LAI) estimation. The consistency of corrected LAI measurement demonstrates the practical value of deploying FSS for canopy foliage monitoring.

Details

Title
A Lightweight Leddar Optical Fusion Scanning System (FSS) for Canopy Foliage Monitoring
Author
Zhouxin Xi  VIAFID ORCID Logo  ; Rood, Stewart B; Barnes, Celeste; Xu, Fang; Pearce, David; Jones, Emily
First page
3943
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535500221
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.