Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents the results of laboratory tests in which evaluation was performed regarding the effect of selected operating factors on the vibroactivity of upper gearbox housings made of three different fiber reinforced polymer composite materials with diverse layouts (cross and random) and types of reinforcing fibers: glass fiber and carbon fiber. The results of tests for composite housings were compared with those for a steel housing. The tests showed that composite housings had a weight lower by more than 60% compared to the steel housing. A multisensor measuring system consisting of vibration acceleration transducers, a directional microphone and a data acquisition card with software was used for the study. Tests of the vibroactivity of upper gear housings were carried out at different loads and rotational speeds of toothed gears. The study showed that composite housings are less sensitive to changes in the rotational speed that steel housings. The tests showed that at a higher rotational speed of the gear transmission, housings made of composite materials had a comparable or lower level of vibration. Tests and analyses of the vibroactivity of housings performed at different loads of the gear allow the conclusion that composite housings, despite a considerably lower weight than steel housings, are less sensitive to changes in the load of the gearing.

Details

Title
The Effect of Selected Operational Factors on the Vibroactivity of Upper Gearbox Housings Made of Composite Materials
Author
Figlus, Tomasz 1   VIAFID ORCID Logo  ; Kozioł, Mateusz 2   VIAFID ORCID Logo  ; Kuczyński, Łukasz 1 

 Faculty of Transport, Silesian University of Technology, 8 Krasinskiego Street, 40-019 Katowice, Poland; [email protected] 
 Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, 8 Krasinskiego Street, 40-019 Katowice, Poland; [email protected] 
First page
4240
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535570731
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.