Abstract

Exciton–polariton Bose–Einstein condensation (EP BEC) is of crucial importance for the development of coherent light sources and optical logic elements, as it creates a new state of matter with coherent nature and nonlinear behaviors. The demand for room temperature EP BEC has driven the development of organic polaritons because of the large binding energies of Frenkel excitons in organic materials. However, the reliance on external high-finesse microcavities for organic EP BEC results in poor compactness and integrability of devices, which restricts their practical applications in on-chip integration. Here, we demonstrate room temperature EP BEC in organic single-crystal microribbon natural cavities. The regularly shaped microribbons serve as waveguide Fabry–Pérot microcavities, in which efficient strong coupling between Frenkel excitons and photons leads to the generation of EPs at room temperature. The large exciton–photon coupling strength due to high exciton densities facilitates the achievement of EP BEC. Taking advantages of interactions in EP condensates and dimension confinement effects, we demonstrate the realization of controllable output of coherent light from the microribbons. We hope that the results will provide a useful enlightenment for using organic single crystals to construct miniaturized polaritonic devices.

The use of room temperature exciton–polariton Bose–Einstein condensation is limited by the need for external high-finesse microcavities. The authors generate room temperature EPs with single-crystal microribbons as waveguide Fabry–Pérot microcavities, and demonstrate controllable output of coherent light.

Details

Title
Room temperature exciton–polariton Bose–Einstein condensation in organic single-crystal microribbon cavities
Author
Tang, Ji 1 ; Zhang, Jian 2 ; Lv Yuanchao 3 ; Wang, Hong 1 ; Feng, Xu Fa 1   VIAFID ORCID Logo  ; Zhang, Chuang 1 ; Sun Liaoxin 2 ; Yao Jiannian 1 ; Zhao, Yong Sheng 1   VIAFID ORCID Logo 

 Chinese Academy of Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
 Chinese Academy of Sciences, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Shanghai, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
 Chinese Academy of Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2535620924
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.