Abstract

Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.

Most archaea divide by binary fission using an FtsZ-based system that is poorly understood. Here, the authors combine structural, cellular, and evolutionary analyses to show that the SepF protein acts as the FtsZ anchor in the archaeon Methanobrevibacter smithii.

Details

Title
SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system
Author
Pende Nika 1 ; Sogues Adrià 2 ; Megrian Daniela 3 ; Sartori-Rupp, Anna 4 ; England, Patrick 5   VIAFID ORCID Logo  ; Palabikyan Hayk 6 ; Rittmann, Simon K-M, R 6   VIAFID ORCID Logo  ; Graña Martín 7   VIAFID ORCID Logo  ; Wehenkel, Anne Marie 8   VIAFID ORCID Logo  ; Alzari, Pedro M 8   VIAFID ORCID Logo  ; Gribaldo Simonetta 1   VIAFID ORCID Logo 

 Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535) 
 Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France (GRID:grid.428999.7) 
 Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535); École Doctorale Complexité du vivant, Sorbonne University, Paris, France (GRID:grid.462844.8) (ISNI:0000 0001 2308 1657) 
 Ultrastructural BioImaging Unit, Institut Pasteur, Paris, France (GRID:grid.428999.7) (ISNI:0000 0001 2353 6535) 
 Plate-forme de biophysique moléculaire, C2RT-Institut Pasteur, CNRS, UMR 3528, Paris, France (GRID:grid.4444.0) (ISNI:0000 0001 2112 9282) 
 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria (GRID:grid.10420.37) (ISNI:0000 0001 2286 1424) 
 Bioinformatics Unit, Institut Pasteur of Montevideo, Montevideo, Uruguay (GRID:grid.418532.9) 
 Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France (GRID:grid.418532.9) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2537005871
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.