Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Children with metastatic solid tumors typically have a very poor prognosis, especially when the cancer returns or is resistant to upfront treatment. There is hope that the cells in the immune system can be programmed to help patients recognize and eliminate their cancer. Natural killer (NK) cells are an important component of the immune system designed to eliminate virally infected cells and tumors. In the last 20 years, advances in cell manufacturing have allowed investigators to grow NK cells in the laboratory to high numbers and engineer the cells to become highly potent. While some clinical trials using NK cells in children with solid tumors have shown promise, we still have much to learn on how to use NK cells effectively. This review will discuss our current understanding of NK cell biology and its relevance to solid tumors that commonly affect children.

Abstract

Treatment of metastatic pediatric solid tumors remain a significant challenge, particularly in relapsed and refractory settings. Standard treatment has included surgical resection, radiation, chemotherapy, and, in the case of neuroblastoma, immunotherapy. Despite such intensive therapy, cancer recurrence is common, and most tumors become refractory to prior therapy, leaving patients with few conventional treatment options. Natural killer (NK) cells are non-major histocompatibility complex (MHC)-restricted lymphocytes that boast several complex killing mechanisms but at an added advantage of not causing graft-versus-host disease, making use of allogeneic NK cells a potential therapeutic option. On top of their killing capacity, NK cells also produce several cytokines and growth factors that act as key regulators of the adaptive immune system, positioning themselves as ideal effector cells for stimulating heavily pretreated immune systems. Despite this promise, clinical efficacy of adoptive NK cell therapy to date has been inconsistent, prompting a detailed understanding of the biological pathways within NK cells that can be leveraged to develop “next generation” NK cell therapies. Here, we review advances in current approaches to optimizing the NK cell antitumor response including combination with other immunotherapies, cytokines, checkpoint inhibition, and engineering NK cells with chimeric antigen receptors (CARs) for the treatment of pediatric solid tumors.

Details

Title
Approaches to Enhance Natural Killer Cell-Based Immunotherapy for Pediatric Solid Tumors
Author
Quamine, Aicha E 1   VIAFID ORCID Logo  ; Olsen, Mallery R 1 ; Cho, Monica M 1 ; Capitini, Christian M 2   VIAFID ORCID Logo 

 Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; [email protected] (A.E.Q.); [email protected] (M.R.O.); [email protected] (M.M.C.) 
 Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; [email protected] (A.E.Q.); [email protected] (M.R.O.); [email protected] (M.M.C.); Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA 
First page
2796
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2539606167
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.