Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Osteoconduction is an important consideration for fabricating bio-active materials for bone regeneration. For years, hydroxyapatite and β-calcium triphosphate (β-TCP) have been used to develop bone grafts for treating bone defects. However, this material can be difficult to handle due to filling material sagging. High molecular weight hyaluronic acid (H-HA) can be used as a carrier to address this problem and improve operability. However, the effect of H-HA on bone formation is still controversial. In this study, low molecular weight hyaluronic acid (L-HA) was fabricated using gamma-ray irradiation. The viscoelastic properties and chemical structure of the fabricated hybrids were evaluated by a rheological analysis nuclear magnetic resonance (NMR) spectrum. The L-MH was mixed with H-HA to produce H-HA/L-HA hybrids at ratios of 80:20, 50:50 and 20:80 (w/w). These HA hybrids were then combined with hydroxyapatite and β-TCP to create a novel bone graft composite. For animal study, artificial bone defects were prepared in rabbit femurs. After 12 weeks of healing, the rabbits were scarified, and the healing statuses were observed and evaluated through micro-computer tomography (CT) and tissue histological images. Our viscoelastic analysis showed that an HA hybrid consisting 20% H-HA is sufficient to maintain elasticity; however, the addition of L-HA dramatically decreases the dynamic viscosity of the HA hybrid. Micro-CT images showed that the new bone formations in the rabbit femur defect model treated with 50% and 80% L-HA were 1.47 (p < 0.05) and 2.26 (p < 0.01) times higher than samples filled with HA free bone graft. In addition, a similar tendency was observed in the results of HE staining. These results lead us to suggest that the material with an H-HA/L-HA ratio of 50:50 exhibited acceptable viscosity and significant new bone formation. Thus, it is reasonable to suggest that it may be a potential candidate to serve as a supporting system for improving the operability of granular bone grafts and enhancing new bone formations.

Details

Title
Estimation of the Effect of Accelerating New Bone Formation of High and Low Molecular Weight Hyaluronic Acid Hybrid: An Animal Study
Author
Po-Jan Kuo 1   VIAFID ORCID Logo  ; Hsiu-Ju Yen 2 ; Chi-Yu, Lin 3 ; Hsuan-Yu, Lai 4 ; Chun-Hung, Chen 5 ; Wang, Shwu-Huey 6 ; Wei-Jen, Chang 4 ; Sheng-Yang, Lee 7 ; Haw-Ming Huang 8   VIAFID ORCID Logo 

 School of Dentistry, Department of Periodontology, National Defense Medical Center and Tri-Service General Hospital, Taipei 11490, Taiwan; [email protected] 
 Department of Dentistry, Division of Prosthodontics, Taipei Medical University Hospital, Taipei 11031, Taiwan; [email protected] 
 School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; [email protected] (C.-Y.L.); [email protected] (H.-Y.L.); [email protected] (W.-J.C.); [email protected] (S.-Y.L.); Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei 11031, Taiwan 
 School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; [email protected] (C.-Y.L.); [email protected] (H.-Y.L.); [email protected] (W.-J.C.); [email protected] (S.-Y.L.) 
 School of Biomedical Engineering, College of Medical Engineering, Taipei 11031, Taiwan; [email protected] 
 Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei 11031, Taiwan; [email protected] 
 School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; [email protected] (C.-Y.L.); [email protected] (H.-Y.L.); [email protected] (W.-J.C.); [email protected] (S.-Y.L.); Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei 11031, Taiwan; Dental Department, Taipei Municipal Wanfang Hospital, Taipei 11031, Taiwan 
 School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; [email protected] (C.-Y.L.); [email protected] (H.-Y.L.); [email protected] (W.-J.C.); [email protected] (S.-Y.L.); Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan 
First page
1708
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2539960640
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.