It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
There is a need for better diagnostic tools that identify loose total hip and knee arthroplasties. Here, we present the accuracy of different 99mTc-dicarboxypropandiphosphate ([99mTc]Tc-DPD) SPECT/CT quantification tools for the detection of loose prostheses in patients with painful hip and knee arthroplasties.
Methods
Quantitative reconstruction of mineral phase SPECT data was performed using Siemens xSPECT-Quant and xSPECT-Bone, with and without metal artefact reduction (iMAR) of CT-data. Quantitative data (SUVmax values) were compared to intraoperative diagnosis or clinical outcome after at least 1 year as standard of comparison. Cut-off values and accuracies were calculated using receiver operator characteristics. Accuracy of uptake quantification was compared to the accuracy of visual SPECT/CT readings, blinded for the quantitative data and clinical outcome.
Results
In this prospective study, 30 consecutive patients with 33 symptomatic hip and knee prostheses underwent [99mTc]Tc-DPD SPECT/CT. Ten arthroplasties were diagnosed loose and 23 stable. Mean-SUVmax was significantly higher around loose prostheses compared to stable prostheses, regardless of the quantification method (P = 0.0025–0.0001). Quantification with xSPECT-Bone-iMAR showed the highest accuracy (93.9% [95% CI 79.6–100%]) which was significantly higher compared to xSPECT-Quant-iMAR (81.8% [67.5–96.1%], P = 0.04) and xSPECT-Quant without iMAR (77.4% [62.4–92.4%], P = 0.02). Accuracies of clinical reading were non-significantly lower compared to quantitative measures (84.8% [70.6–99.1%] (senior) and 81.5% [67.5–96.1%] (trainee)).
Conclusion
Quantification with [99mTc]Tc-DPD xSPECT-Bone-iMAR discriminates best between loose and stable prostheses of all evaluated methods. The overall high accuracy of different quantitative measures underlines the potential of [99mTc]Tc-DPD-quantification as a biomarker and demands further prospective evaluation in a larger number of prosthesis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University Hospital Basel, Division of Nuclear Medicine, Basel, Switzerland (GRID:grid.410567.1)
2 Siemens Healthcare GmbH, Molecular Imaging, Forchheim, Germany (GRID:grid.481749.7) (ISNI:0000 0004 0552 4145)
3 Siemens Medical Solutions USA, Inc., Molecular Imaging, Hoffman Estates, USA (GRID:grid.410567.1)
4 University Hospital Basel, Department of Orthopedic Surgery, Basel, Switzerland (GRID:grid.410567.1)