Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Energy-efficient manufacturing is an important aspect of sustainable development in current society. The rapid development of sensing technologies can collect real-time production data from shop floors, which provides more opportunities for making energy saving decisions about manufacturing systems. In this paper, a digital twin-based bidirectional operation framework is proposed to realize energy-efficient manufacturing systems. The data view, model view, and service view of a digital twin manufacturing system are formulated to describe the physical systems in virtual space, to perform simulation analysis, to make decisions, and to control the physical systems for various energy-saving purposes. For online energy-saving decisions about machines in serial manufacturing systems, an event-driven estimation method of an energy-saving window based on Max-plus Algebra is presented to put the target machine to sleep, considering real-time production data of a system segment. A practical, simplified automotive production line is used to illustrate the effectiveness of the proposed method by simulation experiments. Our method has no restriction on machine failure mode and predefined parameters for energy-saving decision of machines. The proposed approach has potential use in synchronous and asynchronous manufacturing systems.

Details

Title
Event-Driven Online Machine State Decision for Energy-Efficient Manufacturing System Based on Digital Twin Using Max-Plus Algebra
Author
Wang, Junfeng 1 ; Huang, Yaqin 1 ; Chang, Qing 2 ; Li, Shiqi 1 

 Department of Industrial and Manufacturing System Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; [email protected] (Y.H.); [email protected] (S.L.) 
 Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA; [email protected] 
First page
5036
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2541323013
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.