Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the design, simulations, and experimental results related to new analog circuits for voltage controlled synthetic inductors (VCSI) are presented. The new circuits based on a generalized impedance converter (GIC) are proposed for adaptive resonant piezoelectric shunt damping. The VCSIs are implemented using (1) an analog multiplier and (2) an operational transconductance amplifier (OTA) as voltage-controlled resistor. The simulation and experimental results for the new proposed VCSIs are presented and a comparative analysis follows. The proposed VCSIs work in a stable manner in parallel with negative impedance converters (NIC) to enhance structural damping in resonant piezoelectric resistive-inductive shunt applications. The behavior of the synthetic inductor is identical to a real inductor only in a specific frequency range and this situation can explain the reported spreading performance in the literature for resonant piezoelectric shunt damping. The simulation results are validated by a group of experimental investigations that confirm the improved stability and linearity of the new circuits proposed as VCSIs. Experimental results show that the VCSI based on an analog multiplier have an enhanced linearity in comparison with the OTA version in a limited voltage control range.

Details

Title
Voltage-Controlled Synthetic Inductors for Resonant Piezoelectric Shunt Damping: A Comparative Analysis
Author
Vatavu, Marian 1 ; Nastasescu, Vasile 1 ; Turcu, Flaviu 2 ; Burda, Ioan 2 

 Weapons Engineering Systems and Mechatronic Department, Military Technical Academy, 050141 Bucharest, Romania 
 Physics Department, Babes-Bolyai University, 400084 Cluj-Napoca, Romania 
First page
4777
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2541329301
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.