Full text

Turn on search term navigation

Copyright © 2021 Jia-Ming Huan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Hypertensive nephropathy is a common complication of hypertension. Traditional Chinese medicine has been used in the clinical treatment of hypertensive nephropathy for a long time, but the commonly used prescriptions have not been summarized, and the basic therapeutic approaches have not been discussed. Based on data from 3 years of electronic medical records of traditional Chinese medicine used at the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, a complex network and machine learning algorithm was used to explore the prescribed herbs of traditional Chinese medicine in the treatment of hypertensive nephropathy (HN). In this study, complex network algorithms were used to describe traditional Chinese medicine prescriptions for HN treatment. The Apriori algorithm was used to analyze the compatibility of these treatments with modern medicine. Data on the targets and regulatory genes related to hypertensive nephropathy and the herbs that affect their expression were obtained from public databases, and then, the signaling pathways enriched with these genes were identified on the basis of their participation in biological processes. A clustering algorithm was used to analyze the therapeutic pathways at multiple levels. A total of 1499 prescriptions of traditional Chinese medicines used for the treatment of hypertensive renal damage were identified. Fourteen herbs used to treat hypertensive nephropathy act through different biological pathways: huangqi, danshen, dangshen, fuling, baizhu, danggui, chenpi, banxia, gancao, qumai, cheqianzi, ezhu, qianshi, and niuxi. We found the formulae of these herbs and observed that they could downregulate the expression of inflammatory cytokines such as TNF, IL1B, and IL6 and the NF-κB and MAPK signaling pathways to reduce the renal inflammatory damage caused by excessive activation of RAAS. In addition, these herbs could facilitate the deceleration in the decline of renal function and relieve the symptoms of hypertensive nephropathy. In this study, the traditional Chinese medicine approach for treating hypertensive renal damage is summarized and effective treatment prescriptions were identified and analyzed. Data mining technology provided a feasible method for the collation and extraction of traditional Chinese medicine prescription data and provided an objective and reliable tool for use in determining the TCM treatments of hypertensive nephropathy.

Details

Title
Summarizing the Effective Herbs for the Treatment of Hypertensive Nephropathy by Complex Network and Machine Learning
Author
Jia-Ming Huan 1   VIAFID ORCID Logo  ; Wen-Ge, Su 2 ; Li, Wei 2 ; Gao, Chao 2 ; Zhou, Peng 2 ; Chun-Sheng, Fu 2 ; Xiao-Feng, Wang 2 ; Yi-Min, Wang 3 ; Yi-Fei, Wang 2   VIAFID ORCID Logo 

 School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China 
 The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China 
 First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China 
Editor
Arquimedes Gasparotto Junior
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
1741427X
e-ISSN
17414288
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2543198588
Copyright
Copyright © 2021 Jia-Ming Huan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/