Abstract
Background
Drug repositioning, meanings finding new uses for existing drugs, which can accelerate the processing of new drugs research and development. Various computational methods have been presented to predict novel drug–disease associations for drug repositioning based on similarity measures among drugs and diseases. However, there are some known associations between drugs and diseases that previous studies not utilized.
Methods
In this work, we develop a deep gated recurrent units model to predict potential drug–disease interactions using comprehensive similarity measures and Gaussian interaction profile kernel. More specifically, the similarity measure is used to exploit discriminative feature for drugs based on their chemical fingerprints. Meanwhile, the Gaussian interactions profile kernel is employed to obtain efficient feature of diseases based on known disease-disease associations. Then, a deep gated recurrent units model is developed to predict potential drug–disease interactions.
Results
The performance of the proposed model is evaluated on two benchmark datasets under tenfold cross-validation. And to further verify the predictive ability, case studies for predicting new potential indications of drugs were carried out.
Conclusion
The experimental results proved the proposed model is a useful tool for predicting new indications for drugs or new treatments for diseases, and can accelerate drug repositioning and related drug research and discovery.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




