It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Active human body models (AHBM) consider musculoskeletal movement and joint stiffness via active muscle truss elements in the finite element (FE) codes in dynamic application. In the latest models, such as THUMS™ Version 5, nearly all human muscle groups are modeled in form of one-dimensional truss elements connecting each joint. While a lot of work has been done to improve the active and passive behavior of this 1D muscle system in the past, the volumetric muscle system of THUMS was modeled in a much more simplified way based on Post Mortem Human Subject (PMHS) test data. The stiffness changing effect of isometric contraction was hardly considered for the volumetric muscle system of whole human body models so far. While previous works considered this aspect for single muscles, the effect of a change in stiffness due to isometric contraction of volumetric muscles on the AHBM behavior and computation time is yet unknown.
Methods
In this study, a simplified frontal impact using the THUMS Version 5 AM50 occupant model was simulated. Key parameters to regulate muscle tissue stiffness of solid elements in THUMS were identified for the material model MAT_SIMPLIFIED_FOAM and different stiffness states were predefined for the buttock and thigh.
Results
During frontal crash, changes in muscle stiffness had an effect on the overall AHBM behavior including expected injury outcome. Changes in muscle stiffness for the thigh and pelvis, as well as for the entire human body model and for strain-rate-dependent stiffness definitions based on literature data had no significant effect on the computation time.
Discussion
Kinematics, peak impact force and stiffness changes were in general compliance with the literature data. However, different experimental setups had to be considered for comparison, as this topic has not been fully investigated experimentally in automotive applications in the past. Therefore, this study has limitations regarding validation of the frontal impact results.
Conclusion
Variations of default THUMS material model parameters allow an efficient change in stiffness of volumetric muscles for whole AHBM applications. The computation time is unaffected by altering muscle stiffness using the method suggested in this work. Due to a lack of validation data, the results of this work can only be validated with certain limitations. In future works, the default material models of THUMS could be replaced with recently published models to achieve a possibly more biofidelic muscle behavior, which would even allow a functional dependency of the 1D and 3D muscle systems. However, the effect on calculation time and model stability of these models is yet unknown and should be considered in future studies for efficient AHBM applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer