Full text

Turn on search term navigation

© 2021 Xue et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sensors have been growingly used in a variety of applications. The lack of semantic information of obtained sensor data will bring about the heterogeneity problem of sensor data in semantic, schema, and syntax levels. To solve the heterogeneity problem of sensor data, it is necessary to carry out the sensor ontology matching process to determine correspondences among heterogeneous sensor concepts. In this paper, we propose a Siamese Neural Network based Ontology Matching technique (SNN-OM) to align the sensor ontologies, which does not require the utilization of reference alignment to train the network model. In particular, a representative concepts extraction method is presented to enhance the model’s performance and reduce the time of the training process, and an alignment refining method is proposed to enhance the alignments’ quality by removing the logically conflict correspondences. The experimental results show that SNN-OM is capable of efficiently determining high-quality sensor ontology alignments.

Details

Title
Matching sensor ontologies through siamese neural networks without using reference alignment
Author
Xue, Xingsi; Jiang, Chao; Zhang, Jie; Zhu, Hai; Yang, Chaofan
Publication year
2021
Publication date
Jun 18, 2021
Publisher
PeerJ, Inc.
e-ISSN
23765992
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2543676038
Copyright
© 2021 Xue et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.