It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Necessary control techniques must be used in control systems for their proper and smooth operation even in the case of uncertainties and disturbances like sensor-actuator failure. The TRMS workshop serves as a simplified model of a helicopter retaining most of the important dynamic characteristics and cross coupling. This project aims to solve the problem of synthesizing anti-windup control technique based on observer to avoid controller signal entering into saturation in TRMS. The effects of saturation is that systems experience Integrator wind-up. Once the input saturates, the integral of the error keeps increasing. Any further change in the input does not lead to any change of the output of the saturated component. The system behaves like an open-loop configuration, and no control is available. The project applies a Sliding mode control algorithm to the TRMS and uses an observer as an anti-windup technique so that the system doesn’t cease to work even in the case of sensor failure. Using this scheme, the entire system of TRMS along with sensor failure was tested by giving step inputs and the outputs, pitch and yaw were obtained. The results obtained indicated that even in the presence of uncertainties, the system was able to track the given step input without going unstable.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Faculty, Department of Instrumentation and Control
2 Student, Department of Instrumentation and Control
3 Faculty, Department of Electrical and Electonics Engineering Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal