Full Text

Turn on search term navigation

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An empirical model of O3 is developed using the measurements of emissions of biogenic volatile organic compounds (BVOCs), O3 concentration, global solar radiation, photosynthetically active radiation (PAR) and meteorological variables in a subtropical Pinus plantation, China, during 2013–2016. In view of the different structures of isoprene and monoterpenes, two empirical models of O3 concentration are developed, considering PAR absorption and scattering due to gases, liquids and particles (GLPs), as well as PAR attenuation caused by O3 and BVOCs. The estimated O3 is in agreement with the observations, and validation of the O3 empirical model is conducted. O3 concentrations are more sensitive to changes in PAR and water vapor than S/Q (horizontal diffuse to global solar radiation) and BVOC emissions. O3 is positive to changes in isoprene emission at low light and high GLPs, or negative at high light and low GLPs; O3 is negative to changes in monoterpene emissions. O3 are positive with the changes of PAR, water vapor and S/Q. It is suggested to control human-induced high BVOC emissions, regulate plant cutting, and reduce NOx and SO2 emissions more strictly than ever before. There are inverted U-shape interactions between O3 and its driving factors, and S/Q controls their turning points.

Details

Title
O3 Concentration and Its Relation with BVOC Emissions in a Subtropical Plantation
Author
Bai, Jianhui
First page
711
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544577628
Copyright
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.