Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The importance of road characteristics has been highlighted, as road characteristics are fundamental structures established to support many transportation-relevant services. However, there is still huge room for improvement in terms of types and performance of road characteristics detection. With the advantage of geographically tiled maps with high update rates, remarkable accessibility, and increasing availability, this paper proposes a novel simple deep-learning-based approach, namely joint convolutional neural networks (CNNs) adopting adaptive squares with combination rules to detect road characteristics from roadmap tiles. The proposed joint CNNs are responsible for the foreground and background image classification and various types of road characteristics classification from previous foreground images, raising detection accuracy. The adaptive squares with combination rules help efficiently focus road characteristics, augmenting the ability to detect them and provide optimal detection results. Five types of road characteristics—crossroads, T-junctions, Y-junctions, corners, and curves—are exploited, and experimental results demonstrate successful outcomes with outstanding performance in reality. The information of exploited road characteristics with location and type is, thus, converted from human-readable to machine-readable, the results will benefit many applications like feature point reminders, road condition reports, or alert detection for users, drivers, and even autonomous vehicles. We believe this approach will also enable a new path for object detection and geospatial information extraction from valuable map tiles.

Details

Title
Road Characteristics Detection Based on Joint Convolutional Neural Networks with Adaptive Squares
Author
Chiao-Ling Kuo 1   VIAFID ORCID Logo  ; Ming-Hua Tsai 2 

 Research Center for Humanities and Social Sciences, Academia Sinica, Taipei 11529, Taiwan; [email protected]; Department of Geography, National Taiwan University, Taipei 10617, Taiwan 
 Research Center for Humanities and Social Sciences, Academia Sinica, Taipei 11529, Taiwan; [email protected] 
First page
377
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544848280
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.