Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Layer-by-layer films of poly (allylamine hydrochloride) (PAH) and graphene oxide (GO) were characterized, looking at growth with the number of bilayers, morphology, and electrical properties. The PAH/GO films revealed a linear increase in absorbance with the increase in the number of deposited bilayers, allowing the determination that 10.7 ± 0.1 mg m−2 of GO is adsorbed per unit of area of each bilayer. GO absorption bands at 146, 210, 247 and 299 nm, assigned to π-π* and n-π* transitions in the aromatic ring (phenol) and of the carboxylic group, respectively, were characterized by vacuum ultraviolet spectroscopy. The morphological characterization of these films demonstrated that they are not completely uniform, with a bilayer thickness of 10.5 ± 0.7 nm. This study also revealed that the films are composed of GO and/or PAH/GO fibers and that GO is completely adsorbed on top of PAH. The electrical properties of the films reveal that PAH/GO films present a semiconductor behavior. In addition, a slight decrease in conduction was observed when films were prepared in the presence of visible light, likely due to the presence of oxygen and moisture that contributes to the damage of GO molecules.

Details

Title
Graphene Oxide Layer-by-Layer Films for Sensors and Devices
Author
Assunção, Ivan C C 1 ; Sério, Susana 1   VIAFID ORCID Logo  ; Ferreira, Quirina 2   VIAFID ORCID Logo  ; Jones, Nykola C 3   VIAFID ORCID Logo  ; Hoffmann, Søren V 3   VIAFID ORCID Logo  ; Ribeiro, Paulo A 1   VIAFID ORCID Logo  ; Raposo, Maria 1   VIAFID ORCID Logo 

 Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; [email protected] (I.C.C.A.); [email protected] (S.S.) 
 Instituto de Telecomunicações, Avenida Rovisco Pais, 1, 1049-001 Lisboa, Portugal; [email protected] 
 ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark; [email protected] (N.C.J.); [email protected] (S.V.H.) 
First page
1556
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544916254
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.