Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

There are some classes of methods for solving integral equations of the variable boundaries. It is known that each method has its own advantages and disadvantages. By taking into account the disadvantages of known methods, here was constructed a new method free from them. For this, we have used multistep methods of advanced and hybrid types for the construction methods, with the best properties of the intersection of them. We also show some connection of the methods constructed here with the methods which are using solving of the initial-value problem for ODEs of the first order. Some of the constructed methods have been applied to solve model problems. A formula is proposed to determine the maximal values of the order of accuracy for the stable and unstable methods, constructed here. Note that to construct the new methods, here we propose to use the system of algebraic equations which allows us to construct methods with the best properties by using the minimal volume of the computational works at each step. For the construction of more exact methods, here we have proposed to use the multistep second derivative method, which has comparisons with the known methods. We have constructed some formulas to determine the maximal order of accuracy, and also determined the necessary and sufficient conditions for the convergence of the methods constructed here. One can proved by multistep methods, which are usually applied to solve the initial-value problem for ODE, demonstrating the applications of these methods to solve Volterra integro-differential equations. For the illustration of the results, we have constructed some concrete methods, and one of them has been applied to solve a model equation.

Details

Title
Multistep Methods of the Hybrid Type and Their Application to Solve the Second Kind Volterra Integral Equation
Author
Ibrahimov, Vagif 1 ; Imanova, Mehriban 2 

 Computational Mathematics, Baku State University, Baku AZ1148, Azerbaijan; [email protected]; Institute of Control Systems Named after Academician A. Huseynov, Baku AZ1141, Azerbaijan 
 Computational Mathematics, Baku State University, Baku AZ1148, Azerbaijan; [email protected]; Institute of Control Systems Named after Academician A. Huseynov, Baku AZ1141, Azerbaijan; Science Development Foundation under the President of the Republic of Azerbaijan, Baku AZ1025, Azerbaijan 
First page
1087
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544938940
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.