Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

SARS-CoV-2 infection fatality ratios (IFR) remain controversially discussed with implications for political measures. The German county of Tirschenreuth suffered a severe SARS-CoV-2 outbreak in spring 2020, with particularly high case fatality ratio (CFR). To estimate seroprevalence, underreported infections, and IFR for the Tirschenreuth population aged ≥14 years in June/July 2020, we conducted a population-based study including home visits for the elderly, and analyzed 4203 participants for SARS-CoV-2 antibodies via three antibody tests. Latent class analysis yielded 8.6% standardized county-wide seroprevalence, a factor of underreported infections of 5.0, and 2.5% overall IFR. Seroprevalence was two-fold higher among medical workers and one third among current smokers with similar proportions of registered infections. While seroprevalence did not show an age-trend, the factor of underreported infections was 12.2 in the young versus 1.7 for ≥85-year-old. Age-specific IFRs were <0.5% below 60 years of age, 1.0% for age 60–69, and 13.2% for age 70+. Senior care homes accounted for 45% of COVID-19-related deaths, reflected by an IFR of 7.5% among individuals aged 70+ and an overall IFR of 1.4% when excluding senior care home residents from our computation. Our data underscore senior care home infections as key determinant of IFR additionally to age, insufficient targeted testing in the young, and the need for further investigations on behavioral or molecular causes of the fewer infections among current smokers.

Details

Title
Estimates and Determinants of SARS-Cov-2 Seroprevalence and Infection Fatality Ratio Using Latent Class Analysis: The Population-Based Tirschenreuth Study in the Hardest-Hit German County in Spring 2020
Author
Wagner, Ralf 1 ; Peterhoff, David 2   VIAFID ORCID Logo  ; Beileke, Stephanie 3 ; Günther, Felix 4 ; Berr, Melanie 2 ; Einhauser, Sebastian 2   VIAFID ORCID Logo  ; Schütz, Anja 2 ; Niller, Hans Helmut 2 ; Steininger, Philipp 3 ; Knöll, Antje 3   VIAFID ORCID Logo  ; Tenbusch, Matthias 3   VIAFID ORCID Logo  ; Maier, Clara 3 ; Korn, Klaus 3   VIAFID ORCID Logo  ; Stark, Klaus J 5 ; Gessner, André 1 ; Burkhardt, Ralph 6   VIAFID ORCID Logo  ; Kabesch, Michael 7 ; Schedl, Holger 8 ; Küchenhoff, Helmut 9 ; Pfahlberg, Annette B 10   VIAFID ORCID Logo  ; Heid, Iris M 5 ; Gefeller, Olaf 10   VIAFID ORCID Logo  ; Überla, Klaus 3   VIAFID ORCID Logo 

 Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; [email protected] (D.P.); [email protected] (M.B.); [email protected] (S.E.); [email protected] (A.S.); [email protected] (H.H.N.); [email protected] (A.G.); Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany 
 Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; [email protected] (D.P.); [email protected] (M.B.); [email protected] (S.E.); [email protected] (A.S.); [email protected] (H.H.N.); [email protected] (A.G.) 
 Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; [email protected] (S.B.); [email protected] (P.S.); [email protected] (A.K.); [email protected] (M.T.); [email protected] (C.M.); [email protected] (K.K.) 
 Statistical Consulting Unit StaBLab, Department of Statistics, LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; [email protected] (F.G.); [email protected] (H.K.); Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; [email protected] (K.J.S.); [email protected] (I.M.H.) 
 Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; [email protected] (K.J.S.); [email protected] (I.M.H.) 
 Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; [email protected] 
 University Children’s Hospital Regensburg (KUNO) at the Hospital St. Hedwig of the Order of St. John, University of Regensburg, Steinmetzstraße 1-3, 93049 Regensburg, Germany; [email protected] 
 Bayerisches Rotes Kreuz, Kreisverband Tirschenreuth, Egerstraße 21, 95643 Tirschenreuth, Germany; [email protected] 
 Statistical Consulting Unit StaBLab, Department of Statistics, LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany; [email protected] (F.G.); [email protected] (H.K.) 
10  Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054 Erlangen, Germany; [email protected] (A.B.P.); [email protected] (O.G.) 
First page
1118
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19994915
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544944406
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.