Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For a deep understanding of the airflow in an environment of historic wooden trusses, it is necessary to analyze the object using simulation methods. To calculate the amount of air passing through the structural openings (components) using dynamic simulation, multi-zone network models based on the simplicity of modeling the individual zones are suitable. For a more detailed analysis of airflow and temperature distribution within one space, a computational fluid dynamics (CFD) simulation model was performed. The air volume through openings and surface temperatures was adopted from the multi-zone airflow network model. By using this simulation technique during a sunny summer day four characteristic states of air movement were simulated in the attic: more intense flow at noon and at midnight caused by a large temperature difference between air and surrounding surfaces and, subsequently, less intense flow when the air was mixed up effectively. The temperature distribution in the cross-sections did not only indicate an increase in temperature with increasing height (up to 50 °C at noon) but also a temperature increase near the southern roof. The surface temperature of the masonry walls was stable (19–33 °C), while the air temperature fluctuated. The image of the flow was completed by ventilation through the tower, which acted as a solar chimney. The airflow through the door to the tower was almost 0.5 m3 s−1 at summer midnight.

Details

Title
Simulations of Airflow in the Roof Space of a Gothic Sanctuary Using CFD Models
Author
Ponechal, Radoslav; Kysela, Peter; Pisca, Peter
First page
3694
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544974777
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.