Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Autophagy is a major self-degradative process through which cytoplasmic material, including damaged organelles and proteins, are delivered and degraded in the lysosome. Autophagy represents a dynamic recycling system that produces new building blocks and energy, essential for cellular renovation, physiology, and homeostasis. Principal autophagy triggers include starvation, pathogens, and stress. Autophagy plays also a pivotal role in immune response regulation, including immune cell differentiation, antigen presentation and the generation of T effector responses, the development of protective immunity against pathogens, and the coordination of immunometabolic signals. A plethora of studies propose that both impaired and overactive autophagic processes contribute to the pathogenesis of human disorders, including infections, cancer, atherosclerosis, autoimmune and neurodegenerative diseases. Autophagy has been also implicated in the development and progression of allergen-driven airway inflammation and remodeling. Here, we provide an overview of recent studies pertinent to the biology of autophagy and molecular pathways controlling its activation, we discuss autophagy-mediated beneficial and detrimental effects in animal models of allergic diseases and illuminate new advances on the role of autophagy in the pathogenesis of human asthma. We conclude contemplating the potential of targeting autophagy as a novel therapeutic approach for the management of allergic responses and linked asthmatic disease.

Details

Title
Autophagy: A Friend or Foe in Allergic Asthma?
Author
Theofani, Efthymia 1 ; Xanthou, Georgina 2   VIAFID ORCID Logo 

 Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11547 Athens, Greece; [email protected]; 1st Department of Respiratory Medicine, “Sotiria” Regional Chest Diseases Hospital, Medical School, National Kapodistrian University of Athens, 11547 Athens, Greece 
 Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11547 Athens, Greece; [email protected] 
First page
6314
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544997445
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.