Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the field of affective computing, achieving accurate automatic detection of facial movements is an important issue, and great progress has already been made. However, a systematic evaluation of systems that now have access to the dynamic facial database remains an unmet need. This study compared the performance of three systems (FaceReader, OpenFace, AFARtoolbox) that detect each facial movement corresponding to an action unit (AU) derived from the Facial Action Coding System. All machines could detect the presence of AUs from the dynamic facial database at a level above chance. Moreover, OpenFace and AFAR provided higher area under the receiver operating characteristic curve values compared to FaceReader. In addition, several confusion biases of facial components (e.g., AU12 and AU14) were observed to be related to each automated AU detection system and the static mode was superior to dynamic mode for analyzing the posed facial database. These findings demonstrate the features of prediction patterns for each system and provide guidance for research on facial expressions.

Details

Title
Assessing Automated Facial Action Unit Detection Systems for Analyzing Cross-Domain Facial Expression Databases
Author
Namba, Shushi 1   VIAFID ORCID Logo  ; Sato, Wataru 1   VIAFID ORCID Logo  ; Osumi, Masaki 2 ; Shimokawa, Koh 2 

 Psychological Process Team, BZP, Robotics Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 6190288, Japan 
 KOHINATA Limited Liability Company, 2-7-3, Tateba, Naniwa-ku, Osaka 5560020, Japan; [email protected] (M.O.); [email protected] (K.S.) 
First page
4222
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545186783
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.