Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simultaneous detection of carbon dioxide (CO2) and oxygen (O2) has attracted considerable interest since CO2 and O2 play key roles in various industrial and domestic applications. In this study, a new approach based on a fluorescence ratiometric referencing method was reported to develop an optical dual sensor where platinum (II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) complex used as the O2-sensitive dye, CdSe/ZnS quantum dots (QDs) combined with phenol red used as the CO2-sensitive dye, and CdSe/ZnS QDs used as the reference dye for the simultaneous detection of O2 and CO2. All the dyes were immobilized in a gas-permeable matrix poly (isobutyl methacrylate) (PolyIBM) and subjected to excitation using a 380 nm LED. The as-obtained distinct fluorescence spectral intensities were alternately exposed to analyte gases to observe changes in the fluorescence intensity. In the presence of O2, the fluorescence intensity of the Pt (II) complex was considerably quenched, while in the presence of CO2, the fluorescence intensity of QDs was increased. The corresponding ratiometric sensitivities of the optical dual sensor for O2 and CO2 were approximately 13 and 144, respectively. In addition, the response and recovery for O2 and CO2 were calculated to be 10 s/35 s and 20 s/60 s, respectively. Thus, a ratiometric optical dual gas sensor for the simultaneous detection of O2 and CO2 was successfully developed. Effects of spurious fluctuations in the intensity of external and excitation sources were suppressed by the ratiometric sensing approach.

Details

Title
A Ratiometric Optical Dual Sensor for the Simultaneous Detection of Oxygen and Carbon Dioxide
Author
Kumar, Divyanshu 1   VIAFID ORCID Logo  ; Cheng-Shane, Chu 2 

 Department of Mechanical Engineering, Ming Chi University of Technology, Taishan Dist., New Taipei City 243303, Taiwan; [email protected] 
 Department of Mechanical Engineering, Ming Chi University of Technology, Taishan Dist., New Taipei City 243303, Taiwan; [email protected]; Research Center for Intelligent Medical Device, Ming Chi University of Technology, Taishan Dist., New Taipei City 243303, Taiwan 
First page
4057
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545188433
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.