Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the rapid rise of private vehicles around the world, License Plate Recognition (LPR) plays a vital role in supporting the government to manage vehicles effectively. However, an introduction of new types of license plate (LP) or slight changes in the LP format can break previous LPR systems, as they fail to recognize the LP. Moreover, the LPR system is extremely sensitive to the conditions of the surrounding environment. Thus, this paper introduces a novel deep learning-based Korean LPR system that can effectively deal with existing challenges. The main contributions of this study include (1) a robust LPR system with the integration of three pre-processing techniques (defogging, low-light enhancement, and super-resolution) that can effectively recognize the LP under various conditions, (2) the establishment of two original Korean LPR approaches for different scenarios, including whole license plate recognition (W-LPR) and single-character license plate recognition (SC-LPR), and (3) the introduction of two Korean LPR datasets (synthetic data and real data) involving a new type of LP introduced by the Korean government. Through several experiments, the proposed LPR framework achieved the highest recognition accuracy of 98.94%.

Details

Title
Robust Korean License Plate Recognition Based on Deep Neural Networks
Author
Wang, Hanxiang; Li, Yanfen; L-Minh Dang
First page
4140
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545188748
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.