Full text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Abstract

The aim of this study was to examine the mechanisms underlying hypoalgesia induced by spinal manipulation (SM). Eighty-two healthy volunteers were assigned to one of the four intervention groups: no intervention, SM at T4 (homosegmental to pain), SM at T8 (heterosegmental to pain) or light mechanical stimulus at T4 (placebo). Eighty laser stimuli were applied on back skin at T4 to evoke pain and brain activity related to Aδ- and C-fibers activation. The intervention was performed after 40 stimuli. Laser pain was decreased by SM at T4 (p = 0.028) but not T8 (p = 0.13), compared with placebo. However, brain activity related to Aδ-fibers activation was not significantly modulated (all p > 0.05), while C-fiber activity could not be measured reliably. This indicates that SM produces segmental hypoalgesia through inhibition of nociceptive processes that are independent of Aδ fibers. It remains to be clarified whether the effect is mediated by the inhibition of C-fiber activity.

Details

Title
Effects of chiropractic spinal manipulation on laser-evoked pain and brain activity
Author
Provencher, Benjamin; Northon, Stéphane; Carlos Gevers Montoro; Julie O’Shaughnessy; Piché, Mathieu  VIAFID ORCID Logo 
Pages
1-14
Section
Original Paper
Publication year
2021
Publication date
2021
Publisher
BioMed Central
ISSN
18806546
e-ISSN
18806562
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545222979
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.