Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Conventional fixed wing aircraft require a selection of certain thickness of skin material that guarantees structural strength for aerodynamic loadings in various flight modes. However, skin structures of morphing wings are expected to be flexible as well as stiff to structural and coupled aerodynamic loadings from geometry change. Many works in the design of skin structures for morphing wings consider only geometric compliance. Among many morphing classifications, we consider camber rate change as airfoil morphing that changes its rate of the airfoil that induces warping, twisting, and bending in multi-axial directions, which makes compliant skin design for morphing a challenging task. It is desired to design a 3D skin structure for a morphing wing; however, it is a computationally challenging task in the design stage to optimize the design parameters. Therefore, it is of interest to establish the structure design process in rapid approaches. As a first step, the main theme of this study is to numerically validate and suggest simplified 2D plate models that fully represents multi-axial 3D camber morphing. In addition to that, the authors show the usage of lattice structures for the 2D plate models’ skin that will lead to on-demand design of advanced structure through the modification of selected structure.

Details

Title
Simplified 2D Skin Lattice Models for Multi-Axial Camber Morphing Wing Aircraft
Author
Bashir Alsaidi 1 ; Joe, Woong Yeol 2 ; Akbar, Muhammad 1 

 Department of Mechanical and Manufacturing Engineering, Tennessee State University, Nashville, TN 37209, USA 
 KBJ Innovation Co., Nashville, TN 37218, USA 
First page
90
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545564477
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.