Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Granulosa cells (GCs) provide nutrients and information for oocytes in porcine follicles. Follicular atresia is closely related to both apoptosis and autophagy of granulosa cells in ovarian follicles; however, the follicular stages of granulosa cell apoptosis or autophagy during follicular development or atresia are poorly understood. We found that autophagy and apoptosis of GCs occurred in GCs from different size follicles during follicular development, and autophagy was mainly found in GCs of medium follicles, while apoptosis was mainly found in GCs of large follicles. These data provided some useful information to understand follicular atresia which is related to the fertility of sows.

Abstract

Follicular atresia is closely related to both apoptosis and autophagy of granulosa cells (GCs) in ovarian follicles. In the present study, GCs were isolated from pig ovaries in small, medium and large antral follicles, and the current results showed that the proliferation of GCs was higher in medium follicles, and lower in large follicles compared to small follicles. The Bax and Caspase 3 mRNA levels were significantly higher, but the ratio of Bcl-2/Bax was lower in GCs of large follicles. The marker genes of autophagy, Atg3, Atg7 and LC3 mRNA levels were higher in GCs from medium follicles. Apoptosis- and autophagy-related proteins had a similar expression pattern to the mRNA level. Our results showed that phosphorylated ERK (p-ERK) was activated in GCs of large follicles, while phosphorylated AKT (p-AKT) and phosphorylated mTOR (p-mTOR) were inhibited in GCs of medium follicles. Labeling of autophagic vesicles with 4’,6-diamidino-2-phenylindole (DAPI) and monodansylcadaverine (MDC) confirmed the results of gene transcription and protein expression in GCs of different size follicles. We conclude that autophagy and apoptosis of GCs occurred in different size follicles during follicular development, and autophagy was mainly found in GCs of medium follicles, while apoptosis was mainly found in GCs of large follicles.

Details

Title
Autophagy and Apoptosis of Porcine Ovarian Granulosa Cells During Follicular Development
Author
Zheng, Yuxin 1   VIAFID ORCID Logo  ; Ma, Lizhu 1 ; Liu, Ning 1 ; Tang, Xiaorong 1 ; Guo, Shun 1 ; Zhang, Bin 2 ; Jiang, Zhongliang 1 

 College of Animal Science and Technology, Northwest Agriculture & Forestry University, Yangling 712100, China; [email protected] (Y.Z.); [email protected] (L.M.); [email protected] (N.L.); [email protected] (X.T.); [email protected] (S.G.) 
 College of Animal Science and Technology, State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China; [email protected] 
First page
1111
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545931981
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.