Abstract
Background
Cervical spinal cord injury severely affects grasping ability of its survivors. Fortunately, many individuals with tetraplegia retain residual arm movements that allow them to reach for objects. We propose a wearable technology that utilizes arm movement trajectory information and deep learning methods to determine grasp selection. Furthermore, we combined this approach with neuromuscular stimulation to determine if self-driven functional hand movement could be enabled in spinal cord injury participants.
Methods
Two cervical SCI participants performed arbitrary and natural reaching movements toward target objects in three-dimensional space, which were recorded using an inertial sensor worn on their wrist. Time series classifiers were trained to recognize the trajectories using either a Dynamic Time Warping (DTW) algorithm or a Long Short-Term Memory (LSTM) recurrent neural network. As an initial proof-of-concept, we demonstrate real-time classification of the arbitrary movements using DTW only (due to its implementation simplicity), which when used in combination with a high density neuromuscular stimulation sleeve with textile electrodes, enabled participants to perform functional grasping.
Results
Participants were able to consistently perform arbitrary two-dimensional and three-dimensional arm movements which could be classified with high accuracy. Furthermore, it was found that natural reaching trajectories for two different target objects (requiring two different grasp types) were distinct and also discriminable with high accuracy. In offline comparisons, LSTM (mean accuracies 99%) performed significantly better than DTW (mean accuracies 86 and 83%) for both arbitrary and natural reaching movements, respectively. Type I and II errors occurred more frequently for DTW (up to 60 and 15%, respectively), whereas it stayed under 5% for LSTM. Also, DTW achieved online accuracy of 79%.
Conclusions
We demonstrate the feasibility of utilizing arm trajectory information to determine grasp selection using a wearable inertial sensor along with DTW and deep learning methods. Importantly, this technology can be successfully used to control neuromuscular stimulation and restore functional independence to individuals living with paralysis.
Trial registration
NCT, NCT03385005. Registered September 26, 2017
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





