Abstract
Background
An excess of nonsynonymous substitutions, over neutrality, is considered evidence of positive Darwinian selection. Inference for proteins often relies on estimation of the nonsynonymous to synonymous ratio (ω = dN/dS) within a codon model. However, to ease computational difficulties, ω is typically estimated assuming an idealized substitution process where (i) all nonsynonymous substitutions have the same rate (regardless of impact on organism fitness) and (ii) instantaneous double and triple (DT) nucleotide mutations have zero probability (despite evidence that they can occur). It follows that estimates of ω represent an imperfect summary of the intensity of selection, and that tests based on the ω > 1 threshold could be negatively impacted.
Results
We developed a general-purpose parametric (GPP) modelling framework for codons. This novel approach allows specification of all possible instantaneous codon substitutions, including multiple nonsynonymous rates (MNRs) and instantaneous DT nucleotide changes. Existing codon models are specified as special cases of the GPP model. We use GPP models to implement likelihood ratio tests for ω > 1 that accommodate MNRs and DT mutations. Through both simulation and real data analysis, we find that failure to model MNRs and DT mutations reduces power in some cases and inflates false positives in others. False positives under traditional M2a and M8 models were very sensitive to DT changes. This was exacerbated by the choice of frequency parameterization (GY vs. MG), with rates sometimes > 90% under MG. By including MNRs and DT mutations, accuracy and power was greatly improved under the GPP framework. However, we also find that over-parameterized models can perform less well, and this can contribute to degraded performance of LRTs.
Conclusions
We suggest GPP models should be used alongside traditional codon models. Further, all codon models should be deployed within an experimental design that includes (i) assessing robustness to model assumptions, and (ii) investigation of non-standard behaviour of MLEs. As the goal of every analysis is to avoid false conclusions, more work is needed on model selection methods that consider both the increase in fit engendered by a model parameter and the degree to which that parameter is affected by un-modelled evolutionary processes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





