Abstract
Background
Polyglutamine regions (polyQ) are one of the most studied and prevalent homorepeats in eukaryotes. They have a particular length-dependent codon usage, which relates to a characteristic CAG-slippage mechanism. Pathologically expanded tracts of polyQ are known to form aggregates and are involved in the development of several human neurodegenerative diseases. The non-pathogenic function of polyQ is to mediate protein-protein interactions via a coiled-coil pairing with an interactor. They are usually located in a helical context.
Results
Here we study the stability of polyQ regions in evolution, using a set of 60 proteomes from four distinct taxonomic groups (Insecta, Teleostei, Sauria and Mammalia). The polyQ regions can be distinctly grouped in three categories based on their evolutionary stability: stable, unstable by length variation (inserted), and unstable by mutations (mutated). PolyQ regions in these categories can be significantly distinguished by their glutamine codon usage, and we show that the CAG-slippage mechanism is predominant in inserted polyQ of Sauria and Mammalia. The polyQ amino acid context is also influenced by the polyQ stability, with a higher proportion of proline residues around inserted polyQ. By studying the secondary structure of the sequences surrounding polyQ regions, we found that regarding the structural conformation around a polyQ, its stability category is more relevant than its taxonomic information. The protein-protein interaction capacity of a polyQ is also affected by its stability, as stable polyQ have more interactors than unstable polyQ.
Conclusions
Our results show that apart from the sequence of a polyQ, information about its orthologous sequences is needed to assess its function. Codon usage, amino acid context, structural conformation and the protein-protein interaction capacity of polyQ from all studied taxa critically depend on the region stability. There are however some taxa-specific polyQ features that override this importance. We conclude that a taxa-driven evolutionary analysis is of the highest importance for the comprehensive study of any feature of polyglutamine regions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





