Abstract

The permeability barrier of nuclear pore complexes (NPCs) controls nucleocytoplasmic transport. It retains inert macromolecules while allowing facilitated passage of importins and exportins, which in turn shuttle cargo into or out of cell nuclei. The barrier can be described as a condensed phase assembled from cohesive FG repeat domains. NPCs contain several distinct FG domains, each comprising variable repeats. Nevertheless, we now found that sequence heterogeneity is no fundamental requirement for barrier function. Instead, we succeeded in engineering a perfectly repeated 12mer GLFG peptide that self-assembles into a barrier of exquisite transport selectivity and fast transport kinetics. This barrier recapitulates RanGTPase-controlled importin- and exportin-mediated cargo transport and thus represents an ultimately simplified experimental model system. An alternative proline-free sequence forms an amyloid FG phase. Finally, we discovered that FG phases stain bright with ‘DNA-specific’ DAPI/ Hoechst probes, and that such dyes allow for a photo-induced block of nuclear transport.

The permeability barrier of nuclear pore complexes blocks passage of inert macromolecules but allows rapid, receptor-mediated, and RanGTPase-driven transport of cargoes up to ribosome size. The authors now show that such a barrier can be faithfully recapitulated by an ultimately simplified FG phase assembled solely from a tandemly repeated 12mer GLFG peptide.

Details

Title
Recapitulation of selective nuclear import and export with a perfectly repeated 12mer GLFG peptide
Author
Ng, Sheung Chun 1 ; Güttler, Thomas 1   VIAFID ORCID Logo  ; Görlich, Dirk 1   VIAFID ORCID Logo 

 Max Planck Institute for Biophysical Chemistry, Department of Cellular Logistics, Göttingen, Germany (GRID:grid.418140.8) (ISNI:0000 0001 2104 4211) 
Publication year
2021
Publication date
2021
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2546790142
Copyright
© The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.