Full text

Turn on search term navigation

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper we describe a holistic AI forecasting framework which draws on a broad body of literature from disciplines such as forecasting, technological forecasting, futures studies and scenario planning. A review of this literature leads us to propose a new class of scenario planning techniques that we call scenario mapping techniques. These techniques include scenario network mapping, cognitive maps and fuzzy cognitive maps, as well as a new method we propose that we refer to as judgmental distillation mapping. This proposed technique is based on scenario mapping and judgmental forecasting techniques, and is intended to integrate a wide variety of forecasts into a technological map with probabilistic timelines. Judgmental distillation mapping is the centerpiece of the holistic forecasting framework in which it is used to inform a strategic planning process as well as for informing future iterations of the forecasting process. Together, the framework and new technique form a holistic rethinking of how we forecast AI. We also include a discussion of the strengths and weaknesses of the framework, its implications for practice and its implications on research priorities for AI forecasting researchers.

Details

Title
A Holistic Framework for Forecasting Transformative AI
Author
Ross Gruetzemacher
First page
35
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
25042289
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2546937867
Copyright
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.