Full Text

Turn on search term navigation

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Shaping building objects is conditioned by many interrelated factors, both architectural and structural. Modern tools for shaping structures working in the environment of Rhinoceros 3D such as Grasshopper and Karamba 3D enable algorithmic-aided shaping structures, while allowing the free flow of information between the geometric model and structural model. The aim of the research is to use these tools to test the curvilinear steel bar roofs’ structures shaped based on Catalan surfaces as well as to select the most efficient structure. Three types of roof structures were analyzed: cylindroid shape, conoid shape, and hyperbolic paraboloid shape. In order to find the most preferred structural form, evolutionary structural optimization was carried out, which allowed, among others, to determine optimal discretization of the base surface, as well as optimal positions of supporting columns. As the optimization criterion, the minimum mass of the structure was assumed. The most effective structure turned out to be a structure based on hyperbolic paraboloid supported by multi-branch columns. The use of a roof with the above structure is beneficial not only because of the low weight of the structure compared to the analyzed structures, but also due to the possibility of using flat panels on the roof.

Details

Title
Integrated Parametric Shaping of Curvilinear Steel Bar Structures of Canopy Roofs
Author
Dzwierzynska, Jolanta  VIAFID ORCID Logo 
First page
72
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547479021
Copyright
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.