Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The unsatisfactory real-world efficacy of the hypomethylating agent azacitidine in treating myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) has prompted us to investigate the hematological adverse events and host variables that may compromise the use of this epigenetic drug. Using the zebrafish, we found that azacitidine destroyed their myeloid precursors and impaired myeloid function by inhibiting antigen processing, allogeneic response and phagocytic activity, resulting in increased susceptibility to infection even by the normal flora E. coli. In addition, iron overload, a MDS-associated condition following repeated transfusions, exacerbated bacterial infection especially by V. vulnificus with known iron dependence. Furthermore, we show that the tp53M214K mutant zebrafish survived longer than the wild-type (WT) when challenged with bacteria following azacitidine treatment. This was attributed to the mutant’s hematopoietic cells rather than its general genetic background, since the WT animals reconstituted with the tp53M214K mutant kidney marrow became more resistant to bacterial infection following treatment with azacitidine. The clinical relevance of our findings was indicated by a MDS case with severe azacitidine-induced bone marrow suppression and by the association of hyperferritinemia with bacteremia in azacitidine-treated patients, while tp53M214K-mediated resistance to azacitidine-induced myelosuppression may explain the survival advantage of malignant MDS and AML clones over their normal counterparts under azacitidine treatment. Together, we propose that myelosuppression, iron overload and TP53 mutations may represent the host variables that compromise the azacitidine efficacy.

Details

Title
The Impact of the Epigenetic Cancer Drug Azacitidine on Host Immunity: The Role of Myelosuppression, Iron Overload and tp53 Mutations in a Zebrafish Model
Author
Wang, Shu-Ching 1 ; Ching-Tse, Wu 1 ; Dong-Yu, Wu 1 ; Caleb Gon-Shen Chen 2 ; Kuo-Ming, Chang 3 ; Chien-Chung, Chang 4   VIAFID ORCID Logo 

 Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan 
 Department of Hematology, Mackay Memorial Hospital, Taipei 10449, Taiwan 
 Department of Pathology and Laboratory Medicine, Hsinchu Mackay Memorial Hospital, Hsinchu 35071, Taiwan 
 Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan 
First page
1294
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547515452
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.