Abstract
The emergence of brain imaging techniques has shed light on the underlying mechanisms of brain diseases. Abnormalities found in the diseased brain have often been targeted by transcranial magnetic stimulation (TMS), which can modulate long-term neuronal excitability in humans in a noninvasive manner. Thus, its therapeutic application has been extensively explored for neurological and psychiatric disorders. As a result, TMS has been approved for clinical treatment for a few diseases, including drug-refractory depression. However, one of the biggest challenges with TMS is the difficulty in finding the optimal stimulation site. Until now, this process has been heavily dependent on previous activation studies and anatomical knowledge of the region itself, but it largely ignored the whole brain network that interacts with the focal brain region that has been targeted. Here, we propose a novel approach to estimate the prospective network effect following focal interference induced by TMS as a way to optimize the target identification process for TMS research.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




