Abstract
Background
Genomic selection estimates genetic merit based on dense SNP (single nucleotide polymorphism) genotypes and phenotypes. This requires that SNPs explain a large fraction of the genetic variance. The objectives of this work were: (1) to estimate the fraction of genetic variance explained by dense genome-wide markers using 54 K SNP chip genotyping, and (2) to evaluate the effect of alternative marker-based relationship matrices and corrections for the base population on the fraction of the genetic variance explained by markers.
Methods
Two alternative marker-based relationship matrices were estimated using 35 706 SNPs on 1086 dairy bulls. Both pedigree- and marker-based relationship matrices were fitted simultaneously or separately in an animal model to estimate the fraction of variance not explained by the markers, i.e. the fraction explained by the pedigree. The phenotypes considered in the analysis were the deregressed estimated breeding values (dEBV) for milk, fat and protein yield and for somatic cell score (SCS).
Results
When dEBV were not sufficiently accurate (50 or 70%), the estimated fraction of the genetic variance explained by the markers was around 65% for yield traits and 45% for SCS. Scaling marker genotypes with locus-specific frequencies of heterozygotes slightly increased the variance explained by markers, compared with scaling with the average frequency of heterozygotes across loci. The estimated fraction of the genetic variance explained by the markers using separately both relationships matrices followed the same trends but the results were underestimated. With less accurate dEBV estimates, the fraction of the genetic variance explained by markers was underestimated, which is probably an artifact due to the dEBV being estimated by a pedigree-based animal model.
Conclusions
When using only highly accurate dEBV, the proportion of the genetic variance explained by the Illumina 54 K SNP chip was approximately 80% for Brown Swiss cattle. These results depend on the SNP chip used and the family structure of the population, i.e. more dense SNPs and closer family relationships are expected to result in a higher fraction of the variance explained by the SNPs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





