It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This work demonstrates an approach for simplifying fiber-to-chip (edge coupling) packaging by virtually eliminating the longitudinal alignment procedure (also increasing compactness and efficiency) through a fiber lens embedded into the structure of the fiber itself. A parabolic lens, fabricated using focused ion beam milling, with a diameter of 15 μm and height of 5 μm, was embedded 6.5 μm (the working distance of the parabolic lens) below the endfacet of the fiber. The lens focuses a 10.4 μm fiber mode into a spot size of 2.6 μm on the surface of an SMF-28e single-mode optical fiber. The properties of the fabricated lens were studied using the three-dimensional finite-difference time-domain numerical method, and the optimal parameters for maximizing the coupling conditions were extracted. The conversion loss of the lens is estimated to be around \(0.5\,\mathrm{dB}\). The insertion loss and lateral alignment of the proposed parabolic lens is comparable to a commercial lensed fiber, while directly ensuring the longitudinal alignment, easing the angular alignment, and providing additional mechanical and environmental robustness.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer