Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

CpCR, an (R) specific carbonyl reductase, so named because it gave (R)-alcohols on asymmetric reduction of ketones and ketoesters, is a recombinantly expressed enzyme from Candida parapsilosis ATCC 7330. It turns out to be a better aldehyde reductase and catalyses cofactor (NADPH) specific reduction of aliphatic and aromatic aldehydes. Kinetics studies against benzaldehyde and 2,4-dichlorobenzaldehyde show that the enzyme affinity and rate of reaction change significantly upon substitution on the benzene ring of benzaldehyde. CpCR, an MDR (medium chain reductase/dehydrogenase) containing both structural and catalytic Zn atoms, exists as a dimer, unlike the (S) specific reductase (SRED) from the same yeast which can exist in both dimeric and tetrameric forms. Divalent metal salts inhibit the enzyme even at nanomolar concentrations. EDTA chelation decreases CpCR activity. However, chelation done after the enzyme is pre-incubated with the NADPH retains most of the activity implying that Zn removal is largely prevented by the formation of the enzyme-cofactor complex.

Details

Title
Understanding (R) Specific Carbonyl Reductase from Candida parapsilosis ATCC 7330 [CpCR]: Substrate Scope, Kinetic Studies and the Role of Zinc
Author
Karanam, Vinay Kumar 1 ; Chaudhury, Debayan 1 ; Chadha, Anju 2 

 Laboratory of Bioorganic Chemistry, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India 
 Laboratory of Bioorganic Chemistry, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India; National Centre for Catalysis Research, Indian Institute of Technology Madras, Chennai 600036, India 
First page
702
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547596646
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.