Abstract
Background
MicroRNAs (miRNAs) contribute to the progression of chronic kidney disease (CKD) by regulating renal homeostasis. This study explored the effects of miR-181a on CKD through the Toll-like receptor (TLR)/nuclear factor-kappa B (NF-κB) pathway by binding to CRY1.
Methods
Seventy male rats were selected and assigned into specific groups: miR-181a mimic, miR-181a inhibitor, and siRNA against CRY1, with each group undergoing different treatments to investigate many different outcomes. First, 24-h urinary protein was measured. ELISA was used to determine the serum levels of SOD, ROS, MDA, IL-1β, IL-6, and TNF-α. Biochemical tests for renal function were performed to measure albumin, uric acid, and urea in urine and urea nitrogen and creatinine in serum. The glomerulosclerosis index (GSI) and renal tubular epithelial (RTE) cell apoptosis were detected using PASM staining and TUNEL staining, respectively. Finally, RT-qPCR and western blot were done to determine miR-181a, CRY1, TLR2, TLR4, and NF-κB expression.
Results
CRY1 is the target gene of miR-181a, according to a target prediction program and luciferase assay. Rats diagnosed with CKD presented increases in 24-h urinary protein; GSI; RTE cell apoptosis rate; serum ROS, MDA, IL-1β, IL-6, and TNF-α; and CRY1, TLR2, TLR4, and NF-κB expression, as well as decreases in SOD level and miR-181a expression. Following transfection with either the miR-181a mimic or si-CRY1, 24-h urinary protein, renal damage, GSI, and cell apoptosis rate were all decreased. In addition, the overexpression of miR-181a or inhibition of CRY1 alleviated the degree of kidney injury through suppression of the TLR/NF-κB pathway.
Conclusion
miR-181a alleviates both GS and RTE injury in CKD via the down-regulation of the CRY1 gene and the TLR/NF-κB pathway.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





