Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Acute myeloid leukemia (AML) is one of several cancers where cancer proliferation occurs under the influence of an aberrant metabolite known as an oncometabolite produced by a mutated enzyme in the cancer cell. In AML, mutant isocitrate dehydrogenases produce the oncometabolite 2-hydroxyglutarate. We screened AML patients with and without mutant isocitrate dehydrogenases by using a technique known as metabolomics, which measures many different metabolites in patient plasma. It was observed that another metabolite, 2,3-dihydroxybutyrate, was produced in larger amounts in patients with mutated isocitrate dehydrogenase and correlated strongly with 2-hydroxyglutarate levels. Moreover, 2,3-dihydroxybutyrate was a better indicator of the presence of mutated isocitrate dehydrogenase in the cancer than the known oncometabolite 2-hydroxyglutarate. These findings may lead to the characterization of 2,3-dihydroxybutyrate as a novel oncometabolite in AML, which would bring a fuller understanding of the etiology of this disease and offer opportunities for the development of novel therapeutic agents.

Abstract

Acute myeloid leukemia (AML) frequently harbors mutations in isocitrate 1 (IDH1) and 2 (IDH2) genes, leading to the formation of the oncometabolite (2R)-hydroxyglutaric acid (2R-HG) with epigenetic consequences for AML proliferation and differentiation. To investigate if broad metabolic aberrations may result from IDH1 and IDH2 mutations in AML, plasma metabolomics was conducted by gas chromatography–mass spectrometry (GC–MS) on 51 AML patients, 29 IDH1/2 wild-type (WT), 9 with IDH1R132, 12 with IDH2R140 and one with IDH2R172 mutations. Distinct metabolic differences were observed between IDH1/2 WT, IDH1R132 and IDH2R140 patients that comprised 22 plasma metabolites that were mainly amino acids. Only two plasma metabolites were statistically significantly different (p < 0.0001) between both IDH1R132 and WT IDH1/2 and IDH2R140 and WT IDH1/2, specifically (2R)-hydroxyglutaric acid (2R-HG) and the threonine metabolite (2R,3S)-dihydroxybutanoic acid (2,3-DHBA). Moreover, 2R-HG correlated strongly (p < 0.0001) with 2,3-DHBA in plasma. One WT patient was discovered to have a D-2-hydroxyglutarate dehydrogenase (D2HGDH) A426T inactivating mutation but this had little influence on 2R-HG and 2,3-DHBA plasma concentrations. Expression of transporter genes SLC16A1 and SLC16A3 displayed a weak correlation with 2R-HG but not 2,3-DHBA plasma concentrations. Receiver operating characteristic (ROC) analysis demonstrated that 2,3-DHBA was a better biomarker for IDH mutation than 2R-HG (Area under the curve (AUC) 0.861; p < 0.0001; 80% specificity; 87.3% sensitivity). It was concluded that 2,3-DHBA and 2R-HG are both formed by mutant IDH1R132, IDH2R140 and IDH2R172, suggesting a potential role of 2,3-DHBA in AML pathogenesis.

Details

Title
(2R,3S)-Dihydroxybutanoic Acid Synthesis as a Novel Metabolic Function of Mutant Isocitrate Dehydrogenase 1 and 2 in Acute Myeloid Leukemia
Author
Idle, Jeffrey R 1   VIAFID ORCID Logo  ; Seipel, Katja 2   VIAFID ORCID Logo  ; Bacher, Ulrike 3   VIAFID ORCID Logo  ; Pabst, Thomas 4 ; Beyoğlu, Diren 5   VIAFID ORCID Logo 

 Arthur G. Zupko’s Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201-5423, USA; [email protected]; Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland; [email protected] (K.S.); [email protected] (T.P.) 
 Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland; [email protected] (K.S.); [email protected] (T.P.) 
 Department of Hematology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; [email protected] 
 Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland; [email protected] (K.S.); [email protected] (T.P.); Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland 
 Arthur G. Zupko’s Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201-5423, USA; [email protected] 
First page
2842
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2547633946
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.