Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Drug-drug interactions (DDIs) may bring huge health risks and dangerous effects to a patient’s body when taking two or more drugs at the same time or within a certain period of time. Therefore, the automatic extraction of unknown DDIs has great potential for the development of pharmaceutical agents and the safety of drug use. In this article, we propose a novel recurrent hybrid convolutional neural network (RHCNN) for DDI extraction from biomedical literature. In the embedding layer, the texts mentioning two entities are represented as a sequence of semantic embeddings and position embeddings. In particular, the complete semantic embedding is obtained by the information fusion between a word embedding and its contextual information which is learnt by recurrent structure. After that, the hybrid convolutional neural network is employed to learn the sentence-level features which consist of the local context features from consecutive words and the dependency features between separated words for DDI extraction. Lastly but most significantly, in order to make up for the defects of the traditional cross-entropy loss function when dealing with class imbalanced data, we apply an improved focal loss function to mitigate against this problem when using the DDIExtraction 2013 dataset. In our experiments, we achieve DDI automatic extraction with a micro F-score of 75.48% on the DDIExtraction 2013 dataset, outperforming the state-of-the-art approach by 2.49%.

Details

Title
Drug-Drug Interaction Extraction via Recurrent Hybrid Convolutional Neural Networks with an Improved Focal Loss
Author
Sun, Xia 1   VIAFID ORCID Logo  ; Dong, Ke 1   VIAFID ORCID Logo  ; Long, Ma 1 ; Sutcliffe, Richard 1   VIAFID ORCID Logo  ; He, Feijuan 2 ; Chen, Sushing 3 ; Feng, Jun 1   VIAFID ORCID Logo 

 Department of Information Science and Technology, Northwest University, Xi’an 710127, China 
 Department of Computer Science, Xi’an Jiaotong University City College, Xi’an 710069, China 
 Department of Computer Information Science and Engineering, University of Florida, Gainesville, FL 32608, USA 
First page
37
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548375558
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.