It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Glutathione peroxidase (GPx) is a selenocysteine-containing peroxidase enzyme that defends mammalian cells against oxidative stress, but the role of GPx signaling is poorly characterized. Here, we show that GPx type 1 (GPx1) plays a key regulatory role in the apoptosis signaling pathway. The absence of GPx1 augmented TNF-α-induced apoptosis in various RIPK3-negative cancer cells by markedly elevating the level of cytosolic H2O2, which is derived from mitochondria. At the molecular level, the absence of GPx1 led to the strengthened sequential activation of sustained JNK and caspase-8 expression. Two signaling mechanisms are involved in the GPx1-dependent regulation of the apoptosis pathway: (1) GPx1 regulates the level of cytosolic H2O2 that oxidizes the redox protein thioredoxin 1, blocking ASK1 activation, and (2) GPx1 interacts with TRAF2 and interferes with the formation of the active ASK1 complex. Inducible knockdown of GPx1 expression impaired the tumorigenic growth of MDA-MB-231 cells (>70% reduction, P = 0.0034) implanted in mice by promoting apoptosis in vivo. Overall, this study reveals the apoptosis-related signaling function of a GPx family enzyme highly conserved in aerobic organisms.
Cancer: Antioxidative enzyme protects tumor cells from programmed death
An antioxidative enzyme that plays a critical role in regulating whether cells program their own death offers a promising new target for anti-cancer therapies. Glutathione peroxidase-1 (GPX1) is involved in cleaning up reactive metabolic byproducts such as hydrogen peroxide inside cells. Sang Won Kang and colleagues at Ewha Womans University in Seoul, South Korea, showed that this stress-response enzyme also suppresses the induction of normal programmed cell death mechanisms in a variety of cancer cells. The researchers detailed the molecular partners involved in GPX1-mediated signaling inside cancer cells, and demonstrated that genetically reducing GPX1 expression dramatically reduces tumor growth in a mouse model of breast cancer. Drugs with similar inhibitory effects on GPX1 activity might therefore also help shrink tumors in human cancer patients.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Ewha Womans University, Department of Life Science, Seoul, Korea (GRID:grid.255649.9) (ISNI:0000 0001 2171 7754)
2 Ewha Womans University, Department of Life Science, Seoul, Korea (GRID:grid.255649.9) (ISNI:0000 0001 2171 7754); Ewha Womans University, The Research Center for Cellular Homeostasis, Seoul, Korea (GRID:grid.255649.9) (ISNI:0000 0001 2171 7754)