Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Maximum Entropy Theory of Ecology (METE), is a theoretical framework of macroecology that makes a variety of realistic ecological predictions about how species richness, abundance of species, metabolic rate distributions, and spatial aggregation of species interrelate in a given region. In the METE framework, “ecological state variables” (representing total area, total species richness, total abundance, and total metabolic energy) describe macroecological properties of an ecosystem. METE incorporates these state variables into constraints on underlying probability distributions. The method of Lagrange multipliers and maximization of information entropy (MaxEnt) lead to predicted functional forms of distributions of interest. We demonstrate how information entropy is maximized for the general case of a distribution, which has empirical information that provides constraints on the overall predictions. We then show how METE’s two core functions are derived. These functions, called the “Spatial Structure Function” and the “Ecosystem Structure Function” are the core pieces of the theory, from which all the predictions of METE follow (including the Species Area Relationship, the Species Abundance Distribution, and various metabolic distributions). Primarily, we consider the discrete distributions predicted by METE. We also explore the parameter space defined by the METE’s state variables and Lagrange multipliers. We aim to provide a comprehensive resource for ecologists who want to understand the derivations and assumptions of the basic mathematical structure of METE.

Details

Title
Derivations of the Core Functions of the Maximum Entropy Theory of Ecology
Author
Brummer, Alexander B 1   VIAFID ORCID Logo  ; Newman, Erica A 2   VIAFID ORCID Logo 

 Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA 
 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA 
First page
712
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548387130
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.