Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents an approach to detect and classify the faults in complex systems with small amounts of available data history. The methodology is based on the model fusion for fault detection and classification. Moreover, the database is enriched with additional samples if they are correctly classified. For the fault detection, the kernel principal component analysis (KPCA), kernel independent component analysis (KICA) and support vector domain description (SVDD) were used and combined with a fusion operator. For the classification, extreme learning machine (ELM) was used with different activation functions combined with an average fusion function. The performance of the methodology was evaluated with a set of experimental vibration data collected from a test-to-failure bearing test rig. The results show the effectiveness of the proposed approach compared to conventional methods. The fault detection was achieved with a false alarm rate of 2.29% and a null missing alarm rate. The data is also successfully classified with a rate of 99.17%.

Details

Title
A Self-Learning Fault Diagnosis Strategy Based on Multi-Model Fusion
Author
Wang, Tianzhen 1   VIAFID ORCID Logo  ; Dong, Jingjing 2 ; Xie, Tao 2 ; Diallo, Demba 3   VIAFID ORCID Logo  ; Benbouzid, Mohamed 1   VIAFID ORCID Logo 

 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China; Institut de Recherche Dupuy de Lôme UMR CNRS 6026 IRDL, University of Brest, Brest 29238, France 
 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China 
 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China; Group of Electrical Engineering Paris UMR CNRS 8507, CentraleSupelec, Univ. Paris Sud, Sorbonne Université, Gif-sur-Yvette 91192, France 
First page
116
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548416714
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.