Full text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Railway communications are closely impacted by the evolution and availability of new wireless communication technologies. Traditionally, the critical nature of railway services, the long lifecycle of rolling stock, and their certification processes challenge the adoption of the latest communication technologies. A current railway telecom trend to solve this problem is to design a flexible and adaptable communication architecture that enables the detachment of the railway services—at the application layer—and the access technologies underneath, such as 5G and beyond. One of the enablers of this detachment approach is software-defined networking (SDN)—included in 5G architecture—due to its ability to programmatically and dynamically control the network behavior via open interfaces and abstract lower-level functionalities. In this paper, we design a novel railway train-to-ground (T2G) communication architecture based on the 5G technological enabler SDN and on the transport-level redundancy technique multipath TCP (MPTCP). The goal is to provide an adaptable and multitechnology communication service while enhancing the network performance of current systems. MPTCP offers end-to-end (E2E) redundancy by the aggregation of multiple access technologies, and SDN introduces path diversity to offer a resilient and reliable communication. We carry out simulation studies to compare the performance of the legacy communication architecture with our novel approach. The results demonstrate a clear improvement in the failover response time while maintaining and even improving the uplink and downlink overall data rates.

Details

Title
An Adaptable Train-to-Ground Communication Architecture Based on the 5G Technological Enabler SDN
Author
Aguado, Marina; Toledo, Nerea
First page
660
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548434938
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.